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uncovers the regulatory functions of long
noncoding RNAs in fruit development and
color changes of Fragaria pentaphylla
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Abstract

To investigate the molecular mechanism underlying fruit development and color change, comparative transcriptome
analysis was employed to generate transcriptome profiles of two typical wild varieties of Fragaria pentaphylla at three
fruit developmental stages (green fruit stage, turning stage, and ripe fruit stage). We identified 25,699 long noncoding
RNAs (IncRNAs) derived from 25,107 loci in the F. pentaphylla fruit transcriptome, which showed distinct stage- and
genotype-specific expression patterns. Time course analysis detected a large number of differentially expressed
protein-coding genes and IncRNAs associated with fruit development and ripening in both of the F. pentaphylla
varieties. The target genes downregulated in the late stages were enriched in terms of photosynthesis and cell wall
organization or biogenesis, suggesting that IncRNAs may act as negative regulators to suppress photosynthesis and
cell wall organization or biogenesis during fruit development and ripening of F. pentaphylla. Pairwise comparisons of

two varieties at three developmental stages identified 365 differentially expressed IncRNAs in total. Functional
annotation of target genes suggested that IncRNAs in F. pentaphylla may play roles in fruit color formation by
regulating the expression of structural genes or regulatory factors. Construction of the regulatory network further
revealed that the low expression of fra a and CHS may be the main cause of colorless fruit in F. pentaphylia.

Introduction

Strawberry (Fragaria) is considered one of the most
economically important soft fruits in the world. Fragaria
belongs to the family Rosaceae, which contains Duchesnea
and Potentilla as close relatives™. This genus consists of
approximately 24 species representing different ploidy
levels, in which the wild members are mainly distributed
in the Northern Hemisphere as well as western South
America®. Fruit development and ripening of Fragaria are
closely correlated with its economic value. Among other
factors, plant hormones have crucial roles in regulating
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these processes. Numerous advances have been made in
understanding the impact of auxin and gibberellins (GAs)
on Fragaria fruit development and ripening®™®. It has
been confirmed that the interaction between auxin and
GA signaling pathways is essential for the promotion of
fruit set and the early stage of fruit development®. The
levels of indole-3-acetic acid (IAA) and bioactive GAs
rose rapidly during the early phases of fruit development
and then declined as ripening progressed, whereas
abscisic acid (ABA) showed the opposite pattern in
strawberry’. Auxin is already known to have an important
impact on fruit growth and size as well as anthocyanin
synthesis and, hence, the fruit ripening process®’. Tran-
scriptome profiling further revealed that auxin suppressed
anthocyanin biosynthesis by downregulating genes
involved in anthocyanin and flavonoid synthesis and
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transportation into the vacuole. In contrast, genes related
to the auxin signaling pathway were upregulated,
including Aux/IAA and auxin response factor (ARF)'°.
Recent results reveal that the upregulation of the Fve-
CYP707A4a gene by GAs and auxin is a key cross-talk
signal in the early fruit development stage to repress the
elevation of ABA, which mainly acts in the ripening
phase'’. Furthermore, differentially expressed genes
encoding proteins for phytohormones at various devel-
opmental stages provide evidence that other hormones,
such as cytokinin, brassinosteroid (BR), and ethylene, are
also involved in the fruit development and ripening of
Fragaria'”. Physiological and molecular evidence suggests
that BR is associated with the early fruit development and
ripening of Fragaria'®. In addition, silencing of a 9-cis-
epoxycarotenoid dioxygenase gene (FaNCEDI), which
functions in ABA biosynthesis, resulted in a significant
decrease in ABA level and uncolored fruits'*.

Fruit ripening is a complex biological process involving
sugar accumulation, cell wall hydrolysis, flavor and aroma
production as well as color changes'®. Color change,
which can be directly observed, is often used as a marker
for ripening. Anthocyanins are the most prominent pig-
ments in strawberry that not only contribute to fruit color
modification but also have potential health benefits, which
subsequently affect the aesthetic and commercial value of
strawberry. It has been revealed that anthocyanins, fla-
vonols, proanthocyanidins (PAs), and lignin are all derived
from the phenylpropanoid pathway'®. Moreover, mis-
cellaneous enzyme families, transport proteins as well as
transcription factors (TFs) construct complex and intri-
cate biological networks that regulate anthocyanin
synthesis. Some flavonoid biosynthetic pathway genes,
including cinnamate 4-hydroxylase (C4H), chalcone syn-
thase (CHS), chalcone isomerase (CHI), flavanone 3-
hydroxylase (F3H), dihydroflavonol-4-reductase (DER),
and anthocyanidin synthase (ANS), showed lower
expression abundances in yellow strawberry fruits than in
red strawberry fruits, which were coordinated by genes
encoding TFs, such as the MYB, bHLH, WD40, MADS-
box, and WRKY families'”'®, The members of the MYB
family were previously identified and shown to play cri-
tical roles in the regulation of red pigment synthesis in
F. x ananassa and F. vesca'®?°. One SNP causing an
amino acid change in the FreMYBI10 gene was identified
in red and yellow F. vesca accessions and further con-
firmed to be responsible for the yellow color of fruits*’. In
addition, pathogenesis-related protein family 10 (PR-10)
has received considerable attention for its potential to
control anthocyanin formation®"*>, Fra a allergen, one
member of the PR10 family, was directly linked to flavo-
noid biosynthesis and had an essential biological function
in strawberry fruit color formation®,
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Non-coding RNAs with a length longer than 200
nucleotides are defined as long noncoding RNAs
(IncRNAs). They are involved in chromatin modification,
epigenetic regulation, genomic imprinting, transcriptional
control as well as pre- and post-translational mRNA
processing®>**, A large number of IncRNAs have been
identified and characterized in plants. It has been revealed
that IncRNAs play widespread roles in diverse biological
processes in plants?>?°, The function of COOLAIR and
COLDAIR has been studied thoroughly in regulating
flowering in Arabidopsis. The floral repressor flowering
locus C (FLC) is repressed by COOLAIR and COLDAIR
during the process of vernalization””*®. The intergenic
IncRNA LDMAR (long-day-specific-male  fertility-
associated RNA) is required for normal pollen develop-
ment in rice under long-day conditions and regulated by
Psi-LDMAR through the RNA-dependent DNA methy-
lation (RADM) pathway®®*. Furthermore, a number of
IncRNAs have been reported to participate in stress
responses, such as Mt4 in Medicago truncatula®®, IPS1
(induced by phosphate starvation 1) and A¢4 in A. thali-
ana® ™, TPSI1 (tomato phosphate starvation-induced
gene 1) in Solanum lycopersicum™ and OsPIl (Oryza
sativa phosphate starvation-induced gene 1) in O.
sativa®®, which were induced by phosphate starvation.

A growing number of reports have revealed that IncRNAs
play vital roles in gene regulation and other biological
processes in plants. However, the function of IncRNAs in
strawberry fruit development and ripening processes,
especially color change, is largely unexplored. Thus, we
profiled the global gene expression patterns of two typical
wild varieties of F. pentaphylla Lozinsk with different fruit
colors at three developmental stages using high-throughput
transcriptome sequencing. We identified IncRNAs from
different samples using de novo assembly and genome-
guided assembly. Differential expression of IncRNAs and
comparative analysis between two varieties of F. penta-
Pphylla were investigated to reveal the different regulation of
key pathways. Furthermore, regulatory networks of the
identified IncRNAs, mRNAs and miRNAs were constructed
to elucidate the potential regulatory processes of IncRNAs.
This study provides valuable molecular information for
insight into the function of IncRNAs in F. pentaphylla
during fruit development and ripening.

Materials and methods
F. pentaphylla fruit collection, RNA extraction, library
construction, and sequencing

Two typical wild varieties of F. pentaphylla with dif-
ferent fruit colors (FPR, red fruit; FPW, white fruit) were
collected from the field in Sichuan Province, China. Three
stages of fruit development and ripening were dis-
tinguished based on the weight and color of the fruit,
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Fig. 1 Transcriptome profiles of two typical wild varieties of F. pentaphylla during fruit development and ripening. a Color change in the
fruit of two typical wild varieties of F. pentaphylla during fruit development and ripening. F. pentaphylla fruit development was divided into three
stages: green fruit stage, turning stage, and ripe fruit stage. b Venn diagram of differentially expressed genes and IncRNAs during fruit development
and ripening. The number of differentially expressed IncRNAs is indicated by bracket. € GO enrichment analysis of differentially expressed protein-
coding genes in FPW during fruit development and ripening. The x-axis corresponds to GO terms, and the y-axis shows the log, fold change of
differentially expressed protein-coding genes. The color and size of the dot represent the enrichment degree and the number of differentially
expressed protein-coding genes, respectively

which can be separated as the green fruit stage, turning
stage and ripe fruit stage (Fig. la). Three biological
replicates of each fruit sample were immediately flash-
frozen in liquid nitrogen after collection in the field and
stored at —80 °C for later use. Total RNAs were extracted
from the collected fruit samples using an RNeasy Plant
Mini Kit (Qiagen, USA) according to the manufacturer’s
instructions and then subjected to RNA-seq sequencing
and qRT-PCR verification. The RNA quality and quantity
were determined using agarose gel electrophoresis and an
Agilent 2100 Bioanalyzer (Agilent, USA). A total of 18
RNA samples (FPR and FPW at three stages, each with

three biological replicates) were submitted to Chengdu
Life Baseline Technology Co., Ltd. (Chengdu, China) for
strand-specific library preparation and sequencing.
Sequencing of the RNA-Seq libraries was performed on
an Illumina HiSeq 4000 platform, producing 150 bp
paired-end reads. Sequence data have been uploaded to
the NCBI Short Read Archive with accession number
SRP114679.

Sequence processing, alignment, and transcript assembly
To obtain high-quality clean reads, the assessment of
sequencing quality and read processing were performed
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by fastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) and FASTX-Toolkit (http://hannonlab.
cshl.edu/fastx_toolkit/). The low-quality reads were
removed using the same filtering criteria as described
previously®®. The clean reads were aligned to the F. vesca
reference genome®” using HISAT2 (ref. 38) with default
parameters. Stringtie®® was used to assemble transcripts.
Additionally, all unmapped reads derived from the above
libraries were assembled using Trinity®® under default
parameters to obtain comprehensive information of the
F. pentaphylla transcriptome. Novel transcripts obtained
by Stringtie and Trinity were prefixed with “SN” and
“TN”, respectively. Transcriptome assembly quality was
assessed by examining the RNA-Seq read representation
of the assembly and searching the assembled transcripts
against the database of known protein sequences. All
assembled transcripts were filtered by CD-HIT*® (simi-
larity >95%) to generate a non-redundant set of tran-
scripts. The remaining transcripts were further filtered
based on expression levels. The transcripts that had an
average FPKM > 1 and occurred in two or more samples
were selected for further analysis. The open reading frame
(ORF) of the transcript was extracted using TransDe-
code®® with default settings.

Identification of IncRNAs and target prediction in F.
pentaphylla during fruit development and ripening

To distinguish the IncRNAs from protein-coding tran-
scripts, a strict filtering strategy was developed based on
the criteria currently used to identify IncRNAs, compris-
ing the following steps: (i) transcripts with lengths less
than 200 bp or ORF lengths greater than 100 amino acids
were excluded. (ii) Transcripts with sequence homology
to existing proteins were eliminated by searching against
the non-redundant protein database (NR) and the Swis-
sProt protein database using BLASTx. (iii) The coding
potential of the transcript was calculated by CPC*' and
PLEK* to remove transcripts with potential coding abil-
ity. (iv) Other classes of noncoding RNAs were removed
by searching against multiple databases, including the
Rfam database (http://rfam.xfam.org/), Dfam database
(http://www.dfam.org/) and rRNA database (http://ssu-
rrna.org/). After filtering by the above steps, the remain-
ing transcripts were considered putative IncRNAs.

To understand the biological function of IncRNAs, the
target genes were predicted based on cis-acting and trans-
acting modes™”. The sliding window strategy was used to
search cis-acting target genes within 10kb upstream
and downstream of IncRNAs. To identify IncRNAs
that may act in trans-acting mode, the expression corre-
lations between IncRNAs and all protein-coding
genes were calculated. LncRNAs with a trans-acting
mode were recognized if Pearson’s correlation coeffi-
cient (r) > 0.9.
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Functional annotation of protein-coding genes

The protein-coding genes were compared with
sequences in the NR and SwissProt protein databases to
assign potential functions to genes. The programs Blas-
t2GO* and InterproScan®™ were used to obtain GO
annotations and identify protein domains, respectively.
GO enrichment analysis was performed using GOseq with
the following terms: biological process, molecular func-
tion, and cellular component. The metabolic pathways
were predicted using KAAS*. KOBAS3.0 (ref. %) was
used for pathway enrichment analysis. Finally, genome-
wide predictions of TFs in F. pentaphylla were performed
on PlantTFDB".

Abundance estimation and differential expression analysis

The expression abundance of all genes and transcripts
was estimated by RSEM*®, Differentially expressed genes
in each pairwise comparison were identified by DESeq2
(ref. 49). The absolute value of log2 ratio >1 and the
adjusted p-value < 0.05 were used as the thresholds to
determine genes with significant expression changes.
Correlation analysis among biological replicates was per-
formed by the function corrplot in R. Expression patterns
of differentially expressed genes were also analyzed using
K-means and hierarchical clustering.

Regulatory network construction in F. pentaphylla during
fruit development and ripening

To gain insight into the regulatory mechanism of
F. pentaphylla fruit development and ripening, the
mMRNA-IncRNA-miRNA regulatory network was con-
structed based on interactions and target relationships.
Protein—protein interactions were analyzed by STRING>’,
and a confidence score > 0.7 was set as the cut-off cri-
terion for highly confident interactions. The miRNA
sequences of Fragaria were widely determined in previous
studies® . The target relationships of miRNA-mRNA
and miRNA-IncRNA were predicted using psRNA-
Target®® with default parameters. The weighted gene co-
expression network analysis (WGCNA) package was then
used to build a weighted gene correlation network as
described in the previous publications”. For the correla-
tion analysis between the WGCNA modules and the
traits, fruit colors were manually scored as discrete
numerical numbers: 1, green; 2, white; 3, red, referring to
Duan et al>® Cytoscape® was used to integrate and
visualize the regulatory network.

Validation of RNA-seq data by quantitative RT-PCR (qRT-
PCR)

Ten IncRNAs and protein-coding genes were randomly
selected from the present study. The ¢cDNA synthesis,
primer design (listed in Supplementary Table S1) and
execution of qRT-PCR were conducted following a
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previous study’®. qRT-PCR was performed on an ABI
7500 Real-Time System with three technical replicates.
Statistical analysis of qRT-PCR data used the 2 24
method®®, and the actin gene FaACT (GenBank accession
LC017712) was used as the internal reference to nor-
malize expression levels.

Results and discussion
Transcriptome profiling and genome-wide identification of
IncRNA in F. pentaphylla fruit

Two typical wild varieties of F. pentaphylla with a sig-
nificant difference in fruit color were found by field col-
lection. FPR fruit showed a marked change in color from
the turning stage to the ripe stage, while anthocyanins
were abundant in the ripe stage. Conversely, no significant
color variation in FPW fruit was observed at the late
developmental stage (Fig. 1a). To investigate the under-
lying molecular changes during fruit development and
ripening in F. pentaphylla, we used strand-specific
sequencing to explore the expression profiles of protein-
coding genes and IncRNAs for each variety at three
developmental stages. After removing low-quality reads
and filtering contaminant rRNA reads, a total of 186 GB
high-quality clean reads were obtained from 18 samples,
with 10.33 GB per sample on average (Supplementary
Table S2). A relatively low rate of clean reads (61.31% on
average) was mapped to the F. vesca reference genome,
suggesting a large genomic difference between F. penta-
phylla and F. vesca. Genome-guided transcriptome
assembly was carried out based on uniquely mapped reads.
Through the above analysis, 66,323 transcripts derived
from 33,443 genes were obtained, of which 38,381 novel
transcripts were detected on the basis of mapped reads.
Furthermore, the unmapped reads were used to construct
the full-length transcripts via de novo assembly. The two
assembled transcript sets as described above were reduced
to 279,129 transcripts after removing redundancy and low-
expression transcripts. The remaining transcripts con-
stituted a comprehensive transcript set and were used in
subsequent analyses. The number of transcripts in F.
pentaphylla was greater than that in the diploid strawberry
model plant F. vesca (139,997)°°, whereas it was close to
half of the number of transcripts in F. x ananassa (octo-
ploid)®'. The relatively large difference in the number of
transcripts between F. pentaphylla and F. vesca might be
due mainly to genomic differences and alternative splicing.
The total length of the transcripts was 207,450,409 bp, and
the average length of transcripts was approximately 750 bp
(Supplementary Figure S1). Among them, 56,003 tran-
scripts had lengths longer than 1000bp, representing
20.06% of the total transcripts (Supplementary Figure S1).
The correlation analysis and dendrogram clustering illu-
strated the global relative relationships among the
18 samples (Supplementary Figures S2 and S3). All
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biological replicates clustered together with high correla-
tion coefficients (r > 0.94, Supplementary Figure S2).

To predict potential IncRNAs in F. pentaphylla fruit,
the comprehensive set of transcripts was then subjected to
a specific pipeline to identify IncRNAs (see Materials and
methods). As a result, 25,699 transcripts from 25,107 loci
were identified as putative IncRNAs (Supplementary
Figure S4a). The length of IncRNAs ranged from 201 to
2992 bp with an average length of 313 bp (Supplementary
Figure S4b), which is consistent with previous analyses in
plants®*~°*, In addition, IncRNAs showed lower expres-
sion levels and shorter transcript lengths than protein-
coding genes (Supplementary Figure S4c). A Venn dia-
gram revealed that only 5786 IncRNAs were expressed
among all fruit samples (Supplementary Figure S4d), and
a much larger proportion of IncRNAs were expressed in
genotype- and stage-specific manners (Supplementary
Figure S4d).

Differential gene expression during fruit development and
ripening in F. pentaphylla

To better understand the dynamic processes of fruit
development and ripening, we evaluated the time course of
development of F. pentaphylla fruit. We identified 882 and
2625 differentially expressed (DE) protein-coding genes in
the comparisons of FPW1 vs. FPW2 and FPW1 vs. FPW3,
respectively (Fig. 1b, Supplementary Table S3). Compared
with the first fruit development stage, the number of DE
protein-coding genes in the late stage was larger than that
in the middle stage (Fig. 1b). GO enrichment analysis
revealed that these DE genes in FPW were significantly
enriched in important primary and secondary metabolisms,
such as cell wall organization or biogenesis, photosynthesis,
and response to hormone and phenylpropanoid catabolic
processes (Fig. 1c). It is noteworthy that the vast majority of
genes related to cell wall biogenesis and photosynthesis
were downregulated in FPW2 and FPW3 compared to
FPW1 (Fig. 1c). In accordance with GO enrichment ana-
lysis, the results of pathway enrichment analysis also
revealed that the DE protein-coding genes were mainly
involved in photosynthesis, plant hormone signal trans-
duction and phenylpropanoid biosynthesis (Supplementary
Figure S5). Furthermore, some differentially expressed
genes were involved in the pigment biosynthesis pathway,
including flavonoid biosynthesis (10 protein-coding genes)
and carotenoid biosynthesis (13 protein-coding genes,
Supplementary Figure S5). A larger number of DE genes
was detected in the comparisons of FPR1 vs. FPR2 (1744)
and FPR1 vs. FPR3 (3991), which reflected more intensive
developmental changes in FPR (Fig. 1b). Functional anno-
tation revealed that genes associated with photosynthesis
were predominantly downregulated (Supplementary Fig-
ure S6), which was consistent with that in FPW. The
development and ripening of strawberry fruit are
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accompanied by massive and coordinated changes in
metabolic and physiological traits. Photosynthetic changes
of developing strawberry fruit were different from those of
the strawberry leaves, reflecting the scarcity of stomata,
CO, efflux, scarcity of chlorophyll, and closer chlorophyll
ab ratio®. Immunohistochemical and transcriptional stu-
dies revealed that the abundance of several genes involved
in photosynthesis declined during fruit development in
grape berry®>®’. In this study, many protein-coding genes
related to photosynthesis were repressed during fruit
development and ripening (Fig. 1c). As expected, the
protein-coding genes related to chlorophyll binding were
also downregulated along with the fading of the green color
of fruit (Fig. 1c). Numerous publications reported that
changes in the cell wall occurred in strawberry during
ripening68’7°, which was consistent with what we observed
in this study (Fig. 1c).

To further explore the role of IncRNAs in fruit devel-
opment and ripening of F. pentaphylla, we investigated
the IncRNA expression patterns and predicted their
potential functions. As shown in Fig. 1b, more DE
IncRNAs were detected in FPR when comparing FPR2
and FPR3 to FPR1, consisting of 42 and 128 DE IncRNAs.
Moreover, 20 and 81 IncRNAs showed differential
expression in the comparisons of FWR1 vs. FWR2 and
FWR1 vs. FWR3, respectively. It is noteworthy that the
number of DE IncRNAs was remarkably larger in com-
parison to the ripe fruit stage and green fruit stage, indi-
cating that the late developmental stage is more complex.
The function of IncRNAs in regulating fruit development
and ripening has been elucidated®®”". Silencing of two
IncRNAs in tomato resulted in an obvious delay of fruit
ripening”'. To predict the biological function of the
IncRNAs, we identified IncRNA target genes and assigned
them to different types of functional terms. This process
identified a total of 306 DE protein-coding genes come-
diated by DE IncRNAs in fruit development and ripening,
which were involved in important biological processes,
such as photosynthesis, starch and sucrose metabolism,
and diterpenoid biosynthesis (Supplementary Table S4). A
considerable set of studies have demonstrated dramatic
changes in the cell wall during fruit development and
ripening, which directly affect fruit softening and edibil-
ity'®. Fruit-specific rhamnogalacturonate lyase 1 (FaR-
GLyasel) has been confirmed to play an important role in
the fruit ripening-related softening process, which is
involved in the degradation of cell-wall middle lamellae
and ultimately reduces strawberry firmness’”. In the
present study, SN.315 encoding rhamnogalacturonate
lyase was significantly induced at the ripe fruit stage in
both of the F. pentaphylla varieties, whereas no IncRNA
was determined to target this gene (Supplementary
Table S3). Intriguingly, 47 target genes related to cell wall
organization or biogenesis were co-mediated by DE
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IncRNAs in FPR and FPW. Of these genes, 42 (89.3%)
were repressed in the late developmental stage (Supple-
mentary Table S4). The above results suggested that
IncRNAs may be involved mainly in the control of cell
wall changes via repressing the expression of target genes
related to cell wall organization or biogenesis. Photo-
synthetic pathways were also found to be repressed during
fruit ripening”®. In the present study, 32 target genes
annotated as being related to photosynthesis were
downregulated in the late developmental stage. Fifteen of
these genes belong to the chlorophyll a-b binding protein
family, and two of these genes encode a ribulose bispho-
sphate carboxylase small chain (Supplementary Table S4).
Taken together, IncRNAs may act as negative regulators
of photosynthesis and cell wall organization or biogenesis
during fruit development and ripening in F. pentaphylla.

Increasing evidence has suggested that multiple hor-
mones coordinate and interact with each other, forming a
complex network to control early stages of fruit devel-
opment and late stages of ripening. Although the entire
molecular mechanisms that coordinate each hormone and
the regulation of this network are largely unknown,
existing investigations show that genes related to the
biosynthesis and signaling of auxin and GA displayed
dramatic changes through fruit development and ripen-
ing. Examples include genes related to auxin biosynthesis
such as YUCCA (YUC) flavin monooxygenases, trypto-
phan aminotransferase (TAA), and GA-related genes such
as GA receptor (GID), GA 3-oxidase (GA3ox), and GA 2-
oxidase (GA20x)>°. Seven YUC genes and five TAA genes
exhibited different expression patterns during fruit
development and ripening in both F. pentaphylla acces-
sions (Supplementary Table S3), which may directly
control auxin levels in F. pentaphylla fruits, thus per-
mitting ripening. GID, GA3ox, and GA2ox are crucial
components of the GA signaling pathway. Three tran-
scripts encoding GID (TN118649 c0_gl, SN.8344
and SN.20031) were differentially expressed during
fruit development and ripening only in the FPR acces-
sions. In contrast, two transcripts encoding GA3ox
(TN117107_c0_gl and SN.6207) and one for GA2o0x
(TN131209_c0_gl) altered transcription abundance dur-
ing fruit development and ripening in both F. pentaphylla
accessions (Supplementary Table S3). Interestingly, the
expression levels of FpGA3ox showed a progressive
decline during fruit development and ripening in both
accessions, whereas FpGA2o0x was expressed at relatively
high levels in the latter developmental stages (Supple-
mentary Table S3). This finding is consistent with pre-
vious observations showing that GA3ox and GA2ox genes
showed opposite expression patterns during the fruit
growth and ripening period, reflecting a strategy used by
the plant to fine-tune its control of bioactive GA levels®.
Existing investigations show that the ABA/IAA ratio
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serves as a part of the signal to trigger fruit ripening'’.
Disruption  of  9-cis-epoxycarotenoid  dioxygenase
(NCED1), which encodes a rate-limiting enzyme involved
in ABA biosynthesis, resulted in a significant decrease in
ABA levels and uncolored fruits in strawberry'®. Six genes
encoding NCED1 were upregulated during fruit devel-
opment and ripening in both FPW and FPR (Supple-
mentary Table S3), which was in line with previous
reports in F. vesca''. Among these genes, SN.7771, which
shows high similarity to FaNCED1 (JX013944.1), may be
the key player involved in the magnitude of higher tran-
scriptional activity than others and the rapid elevated
response from the green fruit stage to the ripe fruit stage
in FPR (Supplementary Table S3). It is noteworthy that
five genes related to auxin and GA signaling pathways
were targeted by IncRNAs encoding TAA (SN.16092)
and GA3ox (gene06004-v1.0-hybrid, TN117107_c0_gl,
SN.6206, and SN.6207), respectively (Supplementary
Table S4). All these target genes were downregulated in
the ripening process, while the IncRNA genes were
upregulated. These data provide evidence that auxin, GA
and ABA have prominent roles in fruit development and
ripening in F. pentaphylla. Additionally, IncRNAs could
alter the expression of key players related to hormone
biosynthesis and be involved in the regulation of fruit
development and ripening in F. pentaphylla.

Identification and characterization of genes related to
color changes in F. pentaphylla fruits

To investigate the differential regulation of key pathways
between FPR and FPW, we compared gene expression
patterns in FPR and FPW at three stages. In total, we
identified 5621 DE genes from all comparisons (Supple-
mentary Figure S7). Of these, 1416 protein-coding genes
showed commonly differential expression in all compar-
isons (Supplementary Figure S7). Moreover, 2474 genes
showed distinctive expression profiles in only one com-
parison (Supplementary Figure S7). DE genes were related
to plant—pathogen interactions, phenylpropanoid bio-
synthesis and photosynthesis (Supplementary Figure S8).
GO enrichment analysis identified 60 terms that were
significantly enriched among DE genes, in which the three
most enriched terms in the biological process category
were “DNA integration”, “oxidation—reduction process”
and “aminoglycan catabolic process” (Supplementary Fig-
ure S9). The high auxin concentration significantly
inhibited the expression of anthocyanin structural genes
and regulatory genes in callus cultures of red-fleshed
apples, such as MYB and bHLH’. The auxin signaling
pathway has been well studied and involves a cascade
mediated through the SCE™™ /AFE_Aux/IAA-ARF nuclear
signaling module’*, Among 29 DE genes involved in the
auxin signaling pathway, seven genes encoding AREF,
AUX/IAA, and SCF complex subunit showed distinct
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expression dynamics in FPR and FPW across three
developmental stages (Supplementary Table S5). However,
no significantly different expression was observed in these
genes during the process of fruit color change, except for
SN.5270, which was downregulated in FPR3 compared to
FPR1 (Supplementary Tables S3 and S5). These results
implied that the differential regulation of the auxin sig-
naling pathway may not be the main factor contributing to
the difference in fruit color in F. pentaphylla varieties.
Additionally, transcription factors bHLH (13), MYB (12),
WRKY (10) and MADS (3) were detected as significantly
differentially expressed between FPR and FPW (Supple-
mentary Table S5) and have been found to play roles in
anthocyanin biosynthesis'”'®, Of these, seven bHLH and
six MYB transcription factors showed stage-specific dif-
ferential expression in the ripe fruit stage, suggesting that
these transcription factors may influence fruit reddening
in F. pentaphylla (Supplementary Table S5).

The MBW complex consisting of MYB, bHLH, and
WD-repeat proteins has been shown to play critical roles
in regulating anthocyanin biosynthesis by controlling the
expression of the anthocyanin pathway structural genes in
plants’>”®, Among them, FaMYB10 was previously iden-
tified and shown to play critical roles in regulating the red
pigment in the fruit receptacle, which was repressed by
auxin and stimulated by ABA'®. Furthermore, a specific
SNP (G to C, leading to W12S variant) in FveMYB10 was
identified and then functionally confirmed to be respon-
sible for causing the yellow fruit color in the woodland
strawberry”’. The conserved tryptophan (W) residue
within the MYB protein was shown to contribute to a
hydrophobic core in the DNA-binding structure’.
Therefore, the W12S variant in the DNA-binding domain
likely disrupts the DNA-binding function of MYB in F.
vesca®®. Transcriptomic analyses revealed that FpMYBIO
(SN.2358), being homologous to FveMYBI10, was pre-
ferentially expressed in FPR (Supplementary Table S5).
FpMYBI10 harbors W at position 12 and exhibits a Lys (K)
to Ile (I) nonsynonymous mutation at position 31 (Sup-
plementary Figure S10). This K31I substitution at a non-
conservative site was unlikely to have much of an impact
on the function of MYB. A highly homologous transcript
TN118211 c0 g2 (9554% sequence similarities to
FpMYBI10, Supplementary Figure S11) followed an
expression trend similar to FpMYBIO (Supplementary
Table S3), which might also be associated with red pig-
ment synthesis. Since a transient functional assay clearly
showed that FveMYB10 was sufficient to restore red pig-
ments in yellow fruit accessions of F. vesca®, the relatively
lower expression level of FpMYBI10 in FPW might be one
contributor to the white fruit variety of F. pentaphylia.

We further focused on the comparisons between FPR
and FPW at three stages to characterize the specific
function of IncRNAs in the color change of F. pentaphylla
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fruits. In total, 365 IncRNAs showed differential expres-
sion in at least one pairwise comparison (Fig. 2a, Sup-
plementary Table S5). Differentially expressed IncRNAs
showed stage-specific and genotype-specific expression
trends across fruit development and ripening of F. pen-
taphylla (Fig. 2b). Subcluster 1 and subcluster 2, repre-
senting 172 IncRNAs, showed higher expression
abundance in FPW than in FPR at all three stages
(Fig. 2b). In contrast, the IncRNAs in subcluster 3 and
subcluster 4 had higher expression levels in FPR than in
FPW during fruit development and ripening. Previous
studies have shown that IncRNAs operate not only in cis
but also in trans’®”®. According to the fundamental dif-
ferences between these two categories, we used two

strategies to identify DE genes that may be potential tar-
gets of these IncRNAs (see Materials and methods). In
total, we identified 3059 differentially expressed target
genes that were regulated by IncRNA via cis-acting and
trans-acting modes (Fig. 2c). Functional annotation
showed that these DE target genes were mainly associated
with defense response, oxidoreductase activity, and ADP
binding (Supplementary Figure S12a). They were also
involved in diverse biological pathways, such as the bio-
synthesis of secondary metabolites, plant—pathogen
interactions, and starch/sucrose metabolism (Supple-
mentary Figure S12b).

To validate the reliability of the RNA-seq data, the
expression profiles of ten randomly chosen genes were
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Table 1 continued

IncRNA

log2 (Fold change)

ption

Gene_name Gene_descri

Gene_ID

FPW3 vs.
FPR3

FPW2 vs.

FPR2

FPW1 vs.
FPR1

SN.3374, TN127932_c0_g3

—246

—446

Peroxidase superfamily protein

POD

SN.12291
SN.24902
SN.2507

TN100144_c0_g1, TN115428_c0_g1

Peroxidase superfamily protein

POD

TN133028_c1_g2

—-279 —432

—2383

Peroxidase superfamily protein

POD

TN118229_c1_g12, TN128460_c0_g7

Peroxidase superfamily protein

POD

SN.3269

TN118229_c1_g12, TN128460_c0_g7

Peroxidase superfamily protein

POD

TN106277_c0_g1

TN127932_c0_g3

—-2.18

Peroxidase superfamily protein

POD

TN112218_c0_g1

TN118518_c1_g12, TN132683_c0_g9

—4.35

Peroxidase superfamily protein

POD

_c1_g1
TN118841_c0_g1

TN117716_c1

—2.75 TN115428_c0_g1

Peroxidase superfamily protein

POD

TN100144_c0_g1, TN115428_c0_g1

Peroxidase superfamily protein

POD

TN119234_c0_g]
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examined by qRT-PCR. As shown in Supplementary
Figure S13, similar expression patterns were observed via
qRT-PCR analysis as those identified in the RNA-seq data
(Supplementary Figure S13).

The phenylpropanoid biosynthetic pathway genes are
responsible for anthocyanin biosynthesis in plants®’. In the
present study, 30 target genes related to phenylpropanoid
biosynthesis were targeted by DE IncRNAs (Table 1),
encoding 4-coumarate: CoA ligase (4CL), beta-glucosidase
(BGLU), cinnamyl-alcohol dehydrogenase (CAD), perox-
idase (POD), caffeic acid 3-O-methyltransferase (COMT),
and coniferyl-aldehyde dehydrogenase (CALDH). 4CL, as
an important enzyme, plays vital roles in general phenyl-
propanoid metabolism and catalyzes reactions at a key
branching point in the phenylpropanoid pathway®'. Three
genes encoding 4CL were potentially targeted by a single
or multiple IncRNAs and showed significant expression
differences between FPW and FPR, ranging from 8-fold to
32-fold, respectively (Table 1). Glycosylation is assumed to
improve anthocyanin stability and provide an immense
range of color variation in anthocyanins®*>*>. BGLU is also
involved in anthocyanin glycosylation in addition to the
well-known UDP-sugar-dependent glycosyltransferases
(UGTs)®®. At the ripe stage, we detected three differ-
entially expressed BGLU genes, which were predicted as
target genes of DE IncRNAs (Table 1). The competition of
anthocyanin biosynthesis and lignin pathways for their
common precursors has been demonstrated in straw-
berry®. Four genes encoding CAD and five genes encod-
ing POD showed significant differences in expression
levels between FPW and FPR (Table 1), which were also
potentially targeted by DE IncRNAs. Among them, CAD is
a crucial enzyme in lignin biosynthesis, and POD is asso-
ciated with the metabolic interaction between anthocyanin
and lignin biosynthesis®*®’. The members of the POD
family also have a function in anthocyanin degradation®.
Based on the functional annotation, we further discovered
the target genes of IncRNAs involved in plant hormone
signal transduction (Supplementary Figure S14). Twenty-
two of the DE IncRNA target genes widely participated in
auxin, cytokinin, GA, ABA, BR, and salicylic acid (SA)
signal transduction, such as ARF, cytokinin receptor (CRE)
and ethylene-responsive transcription factor (ERF) (Sup-
plementary Figure S14). In addition, many transcription
factors with different expression abundances in FPW and
FPR were potentially targeted by DE IncRNAs, including
bHLH (13), MYB (12), ERE (12), WRKY (10), C2H2 (6)
and bZIP (5) (Fig. 2d). Among them, members of the
MYB, bHLH, MADS, and WRKY families were known
regulatory factors of anthocyanin biosynthesis®. Some DE
transcription factors specific to the turning stage and ripe
fruit stage are presented in Fig. 2d, which may be potential
targets of DE IncRNAs and involved in the control of
the fading of green fruit color and the reddening of
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fruit, including MYB, bHLH, Trihelix, WRKY, EREF,
C2H2, bZIP, and ARF (Fig. 2d). The above results sug-
gested that the fruit development and color change in F.
pentaphylla may be largely regulated by IncRNAs via
regulation of the expression of structural genes and reg-
ulatory factors involved in phenylpropanoid and antho-
cyanin biosynthesis.

Construction of regulatory network for fruit development
and color formation

To obtain a global view of the regulatory mechanism
underlying fruit development and color changes in F.
pentaphylla, protein-coding genes and IncRNAs were
used to construct a gene co-expression network by
WGCNA. In total, sixteen co-expression modules were
developed, containing 15,289 elements. The Pearson
correlation coefficient of each co-expression module with
fruit color was calculated by WGCNA and visualized
using heat maps (Fig. 3a). Out of 16 modules, module
MED9 was strongly positively correlated with fruit color (r
=0.92). Moreover, modules ME10 and ME11 showed a
relatively high correlation with fruit color (r=0.65 and
0.48, respectively). To gain a further understanding of the
three positive correlation modules, functional analysis of

genes in these modules was conducted. The results indi-
cated that the co-expression modules were associated
with specific biological processes or cellular components.
The genes in ME9 were overrepresented in the fatty
acid metabolic process, carboxylic acid biosynthetic pro-
cess, organic acid biosynthetic process, monocarboxylic
acid biosynthetic process, oxoacid metabolic process,
cutin biosynthetic process, fatty acid transport, and
response to abscisic acid (Fig. 3b). For the ME10 mod-
ule, key functional over-representations included the
oxidation-reduction process, methionine catabolic pro-
cess, and steroid metabolic process. Module ME11 was
shown to be enriched in biological processes related to
plant stress response, including defense response, the
phytoalexin biosynthetic process, the camalexin biosyn-
thetic process, the salicylic acid-mediated signaling path-
way, and the jasmonic acid mediated signaling pathway.
Differences in cell component categories further reflected
functional differences between modules (Fig. 3b). In the
category of cell component, the genes of ME9 were
enriched in the plasma membrane and acetyl-CoA car-
boxylase complex (Fig. 3b). Nevertheless, the genes of the
ME10 module were significantly enriched in the cell wall
and cell surface (Fig. 3b).
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Close inspection revealed that genes in the co-
expression module correlated with fruit color were sig-
nificantly enriched in the biological processes of
plant—pathogen interactions and stress responses. Multi-
ple pathogenesis-related (PR) proteins showed distinct
expression patterns between FPW and FPR, including
PR10 proteins. The PR10 family is an important member
of the disease-related protein family and has well-
characterized functions in biotic and abiotic stress
responses and plant growth and development®®®'. Pre-
vious findings provided strong evidence that the PR10
family Fra a gene is directly linked to anthocyanin for-
mation in strawberry fruit and control of color-producing
flavonoid biosynthesis through binding to metabolic
intermediates®"*>*%, Silencing of Fra a genes led to sig-
nificantly decreased levels of anthocyanins along with
parallel downregulation of phenylalanine ammonia lyase
(PAL) and, to a lesser extent, chalcone synthase (CHS)*.
In this study, 29 members of the PR10 protein family were

identified in F. pentaphylla, all of which contained the
conserved Bet_vl-like domain (cd07816, Fig. 4). The
members of the PR10 family contained the highly con-
served glycine-rich loop sequence EG(D/N)GG(V/P)G(T/
S)”!, except for TN49653_c0 g2, SN.5876, and
TN118165 c0_gl (Fig. 4). Among these identified genes,
SN.13759 was highly homologous to the Fra a member
Fra a 1 in F. x ananassa (Fig. 4). The results of cDNA
amplification and SNP calling showed that the transcripts
of SN.13759 in FPR and FPW were entirely identical.
SN.13759 showed differential expression between FPW
and FPR fruits, and the expression abundance was higher
in FPR. The expression fold changes ranged from 1.45 to
5.12 at the three developmental stages. Notably, the
expression level of SN.13759 had a decreasing trend in
FPW during fruit development and ripening, which was
also observed in F. x ananassa'®, whereas it decreased at
first and then increased in FPR. Recently, three members
of the Fra a proteins, which are essential for anthocyanin



Bai et al. Horticulture Research (2019)6:42

Page 13 of 15 42

"

Fig. 5 Fra a-dependent regulatory network in F. pentaphylla. a Fra a-dependent regulatory network in F. pentaphylla. The red, green, and black
nodes denote INcRNAs, miRNAs, and protein-coding genes, respectively. The dashed arrow line denotes a target relationship between an miRNA and
a protein-coding gene or INCRNA; the dashed line represents the protein—protein interaction; the solid line represents the co-expression relationship.
b Heat map of protein-coding genes in the Fra a-dependent regulatory network

chiorophyll a-b binding protein (SN.23718)
oxygen-evolving enhancer protein (SN.1402)
photosystem ii core complex proteins (SN.14181)
laccase-12-like (TN125573_c0_g1)

chiorophyll a-b binding protein (SN.9915)
chiorophyll a-b binding protein (SN.16921)
chiorophyll a-b binding protein (SN.27071)

ribulose-1,5-

(Rubisco, SN.14606)
Fra a (SN.13759)

Fructose-1-6-bisphosphatase (SN.20740)

uncharacterized protein (SN.14859)

NB-ARC domain-containing disease resistance protein (TN129018_c0_g1)
1-deoxy-d-xylulose-5-phosphate (SN.13527)

Nitrate transporter (NRT) (TN129026_c1_g1)

Nitrate transporter (NRT) (SN.25271)

MYB (TN125644_c1_g8)

oxygen-evolving enhancer protein (TN123127_c0_g4)

nac domain—containing protein (SN.22303)
} LRR receptor-like serine threonine—protein kinase (SN.8430)
N oV O N log10(FPKM
R R X N N \$’b 0g10( )
L

05 2 3

J

biosynthesis and red color formation in fruits, have been
well studied in strawberry”>. The transient RNAi-
mediated silencing of Fra a resulted in significantly
decreased levels of anthocyanins and upstream metabo-
lites, which demonstrated a clear link between Fra a
expression and anthocyanin formation®”. Fra a seems to
fine-tune the flavonoid composition by binding to diverse
intermediates in flavonoid biosynthesis®'. It is worth
mentioning that Fra a proteins have different selectivity
and affinity when binding natural metabolites in the fla-
vonoid pathway, which might be the result of amino acid
variability at certain positions®'. Additionally, distinct
expression patterns were detected in the members of the
Fra a family in F. x ananassa®. The Fra a le and Fra a 3
transcription levels decreased from the green fruit stage to
the red fruit stage, whereas Fra a 2 was actively tran-
scribed in the late stages of fruit ripening®. Consistent
with this observation, other members of the Fra a family
showed different variation trends in expression levels
during fruit development and ripening of F. pentaphylia,
indicating functional differences in the members of the
Fra a family.

Despite great progress in the elucidation of Fra a function
in anthocyanin biosynthesis, our understanding of the Fra
a-dependent regulatory network in fruit color formation is
very limited. We further intended to determine whether
IncRNAs participate in this regulatory network. We
attempted to construct a comprehensive regulatory network
of fruit development and color formation by analyzing
protein—protein interactions and target predictions of
miRNA-mRNA and miRNA-IncRNA relationships. Based
on the analysis above, a comprehensive regulatory network

was established that contained 20,770 protein-coding genes,
3,036 IncRNAs, and 821 miRNAs. Within this network,
multiple interaction patterns were recognized, such as one-
to-one, one-to-many and many-to-many. We extracted a
sub-network from the abovementioned regulatory network
to further investigate Fra a-dependent regulatory relation-
ships. A total of 24 elements were identified in this sub-
network, which included nineteen protein-coding genes,
three IncRNAs and two miRNAs (Fig. 5a). These protein-
coding genes were associated with photosynthesis, nitrogen
metabolism, and signal transduction (Fig. 5b). Coupled with
fading of green and increased reddening in fruits, the
expression levels of genes encoding chlorophyll a-b binding
protein and ribulose-1,5-bisphosphate carboxylase oxyge-
nase (Rubisco) were continuously downregulated in FPR
and FPW fruits (Fig. 5b). Simultaneously, SN.13759 showed
a downregulatory expression trend in FPW, whereas it
decreased at first and then increased in FPR (Fig. 5b). At
present, it is not known whether this differential expression
pattern has exactly contributed to the color variation and
the mechanisms of the regulation of color variation remain
unclear. Interestingly, Fra a expression was upregulated in
naturally occurring white-fruited genotypes of F. chiloensis
and F. vesca, which was likely to compensate for the low
expression levels of PAL and CHS in these mutant geno-
types™. Silencing of Fra a reduced FaPAL and FaCHS
transcript levels by as much as 60% (ref. *%). In this study,
the CHS gene TN122753 c0_g2 was expressed at a much
higher level in FPR at the ripe fruit stage than in FPW
(Supplementary Table S5). It can be inferred that the defi-
ciency of this first key enzyme leading to anthocyanin
biosynthesis could contribute to colorless fruits. However,
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the function of the observed upregulation of SN.13759 at
the ripe fruit stage in FPR and its function related to the
observed upregulation of TN122753 c0 g2 CHS gene
might be of particular interest in future studies. Moreover,
three IncRNAs (TN126539_c0_gl, TN131414 c0_g9, and
SN.15536) targeted multiple genes in this sub-network,
again indicating that IncRNAs play roles in fruit color
change in F. pentaphylla. Moreover, we identified one
uncharacterized gene that was involved in the above process
(Fig. 5b). Further studies focused on the functions of these
genes would greatly help to elucidate the molecular reg-
ulatory mechanisms of fruit development and color for-
mation in F. pentaphylla.
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